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ABSTRACT 

   In this work, three different cases that cover different flow patterns in microchannels 

was studied by implementing the first and second order velocity-slip/temperature jump 

models in order to observe the behavior of the flow so that a certain criteria for the use 

of each of the no-slip, and the two slip models is established. These three cases are; the 

Jeffery-Hamel flow in microchannels, Fanno flow in circular microchannels and a 

number of basic fluctuating flows in microchannels.  

   In the first part, the Jeffery-Hamel flow case has been studied using both, first order 

and second order velocity-slip boundary conditions models and then compared to the 

no-slip boundary conditions solution. The study concentrates on investigating the effect 

the change of Kn number has on the velocity profiles, magnitude of slip at the wall and 

the skin friction coefficient. For the inflow case it was found that due to the favorable 

pressure gradient the differences between the three models studied increases 

significantly as the Kn number increases and according to that three Kn number regions 

can be established. In the outflow case the difference between the no-slip model and the 

two slip models is much smaller. But as Re·α parameter becomes larger, at relatively 

large Kn numbers, the adverse pressure gradient causes the flow at the wall to separate 

at Re·α values lower than 10.31. This is predicted only by the second order velocity-slip 

model so for outflow cases near the separation flow region the second order velocity-

slip model should always be used. It was also found that increasing the Kn number 

decreases the skin friction coefficient calculated using the two velocity-slip models in 

all cases except for when separation occurs, as when the velocity at the wall is reversed 

this factor increases. 

   In the second part, the effect of adding the second order term to the velocity-

slip/temperature-jump boundary condition has on the solution of four cases in which the 

driving force is fluctuating was examined. The study concentrated on comparing the 

effect frequency has on the velocity and temperature solutions at given Kn number 

using the first and the second order slip/jump models. It is found that, at a given Kn 

number value, increasing the driving force frequency increases the difference between 
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the first and second order models. It was found that the critical frequency for which the 

second order velocity-slip model should be used instead of the first order depends on 

the Kn number and also on the type of the flow driving force.  

   In the third part, the Fanno flow problem has been studied using both, first order and 

second order velocity-slip boundary conditions models and then compared to the no-slip 

boundary conditions solution. The study concentrates on investigating the effect the 

change of Kn number has on the velocity profiles, magnitude of slip at the wall, skin 

friction coefficient Cf and the Lmax/D factor characteristic of Fanno line. It is found that 

the slip increases as the Kn increases and the skin friction coefficient decreases. Also as 

the Kn number increases, the friction coefficient f decreases, this reduction in friction 

leads to increase of the L/D parameter for both supersonic and subsonic flows with slip 

when compared to the no-slip solution. Overall, it is concluded that for an adiabatic 

compressible flow in circular microchannel, for Kn≤0.01 there is no need to apply any 

velocity-slip model as the no-slip model will give sufficiently accurate predictions. As 

for the range 0.01≤Kn≤0.1, the first order velocity slip model should be applied, and 

that for this range, there is no necessity to use the second order velocity-slip model. 
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Chapter One 

Introduction 

 

1.1 Prologue 

In the recent years the industry, driven by the constant quest for miniaturization of 

gadgets and machines, has developed a number of manufacturing processes that can 

create extremely small electronic and mechanical components. This has led to the 

increase of interest in the micro-scale fluid and heat transfer research. It was observed 

that in such small devices the fluid flows differ from those in macroscopic machines 

and cannot always be predicted from conventional flow models such as the Navier-

Stokes equations with no-slip boundary condition at a fluid-solid interface. Slip flow, 

thermal creep, rarefaction, viscous dissipation, compressibility, intermolecular forces 

and other unconventional effects may have to be taken into account. For gases, micro-

fluid mechanics has been studied by incorporating slip boundary conditions, thermal 

creep, viscous dissipation as well as compressibility effects into the continuum 

equations of motion, but it has a number of limitations. Molecular-based models have 

also been attempted for certain ranges of the operating parameters.  

These small devices for which the characteristic length falls in the range between 1 mm 

and 1 micron are usually referred to as microelectromechanical systems (MEMS). Some 

of them are very complex systems that combine electrical and mechanical components. 

These small devices are usually manufactured using integrated circuit batch-processing 

technologies such as surface silicon micromachining; bulk silicon micromachining; 

lithography, electrodeposition and plastic molding and electrodischarge machining 
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(EDM)
 [16]

. Yet smaller devices are being developed with an overall dimension of less 

than a1 micron, these are referred to as nanodevices (or NEMS). Applications of such 

small devices can nowadays be found in the electronic industries, for example ink jet 

printing where micropumps deliver picoliters of ink through microscopic nozzles. 

Another potential application is in electronic equipment cooling, scientists are 

experimenting on micro heat sinks which can be integrated into the chips to cool the 

new power hungry microprocessors. There is also work on potential medical 

applications as the development of an artificial pancreas.  

When experimental work was conducted on a number of such small devices in was 

noticed that the fluid flow behavior differ from that in macro machines.  When scientists 

tried to apply the same principles for conventional flows such as the Navier-Stokes 

equations with no-slip boundary condition at a fluid-solid interface to microscopic 

equipment as microscopic ducts, nozzles or valves, there was difference between the 

theoretical and the experimental data obtained. One such example is the measured 

flowrate in a long pipe which was observed to be higher than that predicted from the 

conventional continuum flow model.  

This difference in results started a search for a suitable model for dealing with flow in 

micro devices. One of the major factors that lead to such a difference is the surface 

effect which is dominant in such small devices.   Depending on the size of the micro 

device, the surface-to-volume ratio can be millions of times larger than that for a macro 

device. This increase in surface area relative to the mass of the micro device noticeably 

affects the transport of mass, momentum and energy through the surface. For some very 

small devices the continuum approach altogether can fail. In such a small devices slip 

flow, thermal creep, rarefaction, viscous dissipation, compressibility and intermolecular 

forces all start to play significant role and may have to be taken into account preferably 
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using only first principles such as conservation of mass, Newton’s second law, 

conservation of energy, etc. 

When characterizing the flow in a particular device the best way is to begin by 

computing the typical Reynolds, Mach and Knudsen numbers. For example, gas flows 

in micro devices is usually studied by applying the continuum equations of motion with 

slip boundary conditions and also taking into account the thermal creep, viscous 

dissipation and compressibility effects. 

For some cases and operating ranges where the continuum approach fails a number of 

molecular based models have been proposed and tried. In such cases, molecular 

dynamics simulations seem to be the only first-principle approach available to 

characterize liquid flows in microdevices. One of the famous molecular models is the 

direct simulation Monte Carlo (DSMC) method which is based on a kinetic formulation 

and is valid for all flow regimes. However these models require huge processing power 

and their convergence is very slow and sensitive, so they are hardly practical solution 

 

1.2 Literature Review: 

Following is a review of some of the work, theoretical and experimental, published in 

the microchannel flow research area. Most of these publications have come out in the 

last five years as the topic is still considered to be new and constantly evolving.  

An interesting review papers on the topic is Gad-Al-Hak (1999) “The Fluid Mechanics 

of Microdevices-The Freeman Scholar Lecture” which serves as an excellent 

introduction into the microelectromechanical systems (MEMS) research area. It 

explains the phenomena of fluid flow in microdevices and the different flow regimes in 
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micro-domains. It also summarizes the important parameters and the governing 

equations applicable in micro-flows. The paper also emphasizes the use of MEMS as 

sensors and actuators for flow diagnosis and control.  

Other good review papers of the research in the microchannel flow area were published 

by Obot (2002) and by Celata (2004). Another work presenting an interesting historical 

overview and deeper physical understanding of the slip boundary condition has been 

published by Lauga (2005). 

Michael J. Martin and Iain D. Boyd (2001) studied the effect slip condition has on the 

Blasius Boundary Layer Solution. Their results showed that the boundary layer 

equations can be used to study flow at the MEMS scale, and to judge when non-

equilibrium effects become important. While the self-similarity of the Blasius boundary 

layer is lost, the boundary layer equations continue to provide useful information to 

study the effects of rarefaction on the shear stress and structure of the flow. They also 

show the weakness of using a simple geometric Knudsen number in describing the flow, 

and provide a new flow parameter, K1, for describing non-equilibrium behavior. Navier-

Stokes flow solvers, incorporating the effects of slip conditions at the boundary, have 

been used to study the accuracy of these solutions for flow over thin flat plates. These 

results were used to evaluate test conditions for an experimental study of MEMS scale 

airfoils. Based on the results of their work, and additional computational studies, 

suggest that the reduction in drag due to these effects should be measurable for flat 

plates with chords of 10-40µm, at pressures ranging from 0.1 to 1.0 atmospheres. 

Asako et al. (2003) studied the Effect of compressibility on gaseous flows in micro-

channels. They solved two-dimensional compressible momentum and energy equations 

in a parallel plate channel to obtain the effect of compressibility on gaseous flow 
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characteristics in micro-channels. The computations were performed for a wide range of 

Reynolds number and Mach number and for both no-heat-conduction, and isothermal 

flow conditions. From their work it was concluded that both Fanning and Darcy friction 

factors are function of the Mach number and they differ from the incompressible value 

of 96 for parallel-plate ducts.  The effect of stagnation pressure and temperature on the 

friction factors is small. Their values for two cases of big differences of pressure and 

temperature varied by about only 2%. 

More recently, Haddad et al. (2005) investigated theoretically the effect of frequency 

of fluctuation of the driving force on velocity slip and temperature jump at the 

wall(s) for four cases of basic gas micro-flow problems. The cases they 

considered were the transient Couette flow, the pulsating Poiseuille flow, the 

Stoke's second problem flow and the transient natural convection flow. The 

formulation of the problem had revealed that the controlling parameter of the 

problem is a combination of Knudsen number (Kn) and frequency of fluctuation (ω) 

in the form of an effective Knudsen number, 𝐾𝑛𝑒𝑓𝑓 =  𝜔𝐾𝑛, that replaced the usual 

Knudsen number (Kn), and consequently the slip flow regime was found to be 

valid when 10
-3

 ≤ Kneff ≤ 10
-1

. They also found that when the frequency is small the 

velocity and temperature profiles are similar to the corresponding classical macro-flow 

profiles at zero frequency. Also, the slip in velocity and the jump in temperature 

increase as the Knudsen number and/or the frequency of the driving force increases. 

In addition, the slip in velocity and the jump in temperature were found to be 

negligible when the frequency and/or Kn are sufficiently small. Another work 

concerned with the effect of slip in oscillating walls in Couette flow and Stoke's 

second problem has been published by Khaled and Vafai (2004). 
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In another work, Toh et al. (2002) performed a numerical study of fluid flow and heat 

transfer in microchannels. The heat transfer inside four microchannels heat sinks has 

been presented. The local thermal resistance has also been well predicted for a situation 

where experimental data is available. The numerical procedure correctly predicted the 

location of the maximum thermal resistance and the drop (due to axial heat spreading) 

in the thermal resistance towards the trailing edge of the heater. The friction factor has 

also been predicted in this study. It was found that the heat input lowers the frictional 

losses, particularly at lower Reynolds numbers. At lower Reynolds numbers the 

temperature of the water increases, leading to a decrease in the viscosity and hence 

smaller frictional losses. 

Ambatipudi and Rahman (2000) performed an analysis of conjugate heat transfer in 

microchannel heat sinks. They numerically investigated the heat transfer in a silicon 

substrate containing rectangular microchannels by developing an exact model for a 

device that was fabricated using silicon. Equations governing the conservation of mass, 

momentum, and energy were solved in the fluid region (microchannels). Within the 

solid wafer, the heat conduction was solved. The effects of channel aspect ratio, 

Reynolds number, and number of channels on the thermal performance of the device 

was investigated. It was found that the Nusselt number is more for a system with a 

larger number of channels and larger Reynolds number. For Re = 673, the optimum 

channel depth that maximizes Nusselt number occurred at 300µm. This interesting 

behavior of Nusselt number variation is the result of competing effects of thermal 

resistance inside the solid and that at the solid/fluid interface. When the Reynolds 

number and channel width are constant, the pressure drop is inversely proportional to 

the depth of the channel. Increasing the number of channels increased the local Nusselt 

number along the entire length of the channel. 
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In an example on experimental work in microchannels, Araki et al. (2002) performed an 

experimental investigation of gaseous flow characteristics in microchannels. They 

investigated frictional characteristics of nitrogen and helium flows in three different 

microchannels with hydraulic diameter range of between 3–10 µm. The frictional 

resistance of gaseous flow in a trapezoidal cross-section microchannel was observed to 

be smaller than that in the conventional-sized channel. The reduced frictional resistance 

in microchannels is caused by the rarefaction effect due to extremely small dimensions 

of flow passages. By using Maxwell’s first-order slip boundary condition, they 

predicted the mass flow rate through microchannels and the friction constant. 

Another experimental work was done by Gao et al. (2002) who carried out an 

investigation of the flow and the associated heat transfer in two-dimensional 

microchannels. Their results were affected by a significant scatter, owing to the various 

conditions used in the experiments, and, most likely, owing to the difficulty of 

measurements at micronic scales. The present facility was designed to modify easily the 

channel height e. It was then possible to investigate hydrodynamics and heat transfer in 

channels of height ranging from 1 mm, which corresponds to conventional size, up to 

0.1 mm, where size effects are expected. Size effects were therefore tested in the same 

set-up and with the same channel walls for all the experiments, which were carried out 

with demineralized water. Measurements of the overall friction coefficient and of local 

Nusselt numbers show that the classical laws of hydrodynamics and heat transfer are 

verified for e > 0.4 mm. For lower values of e, a significant decrease of the Nusselt 

number is observed whereas the Poiseuille number keeps the conventional value of 

laminar developed flow. The transition to turbulence is not affected by the channel size. 

Pettersen (2004) studied experimentally the two-phase flow patterns in microchannel 

vaporization of CO2 at near-critical pressure.  A special test rig was built in order to 
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observe two-phase flow patterns. The observations showed a dominance of intermittent 

(slug) flow at low x and wavy annular flow with entrainment of droplets at higher x. 

Stratified flow was not observed in the tests with heat load. Bubble formation and 

growth could be observed in the liquid film, and the presence of bubbles gave 

differences in flow pattern compared to adiabatic flow. The flow pattern observations 

on CO2 did not fit any of the generalized maps or transition lines. Compared to small-

diameter observations with air/water at low pressure, the transition into annular flow 

occurred at a much lower superficial vapor velocity (superficial velocity of 

approximately 0.5ms
−1

). The observed inception of entrainment at 0.5–0.6 ms
−1

 

superficial vapor flow velocity was close to the predicted onset at 0.4 ms
−1

. 

Another examples of experimental work published on the topic of micro-flow are the 

papers by Arkilic et al. (2001), Chen et al. (2004) and Nishio (2004). Roy et al. (2003) 

published a work that used both theoretical and experimental techniques for modeling 

of gas flow in microchannels and nanopores.  

Also a fair amount of work has been done using molecular-dynamics and probabilistic 

models. One of the famous is the direct simulation Monte Carlo (DSMC) method 

(Alexeenko, et al. (2005), Faghri and Sun (2003), Tzeng and Chen (2003)) which is 

based on a kinetic formulation and is valid for the entire range of Kn numbers. Another 

molecular model used by Tretheway et al. (2002) for gas flow behavior investigation is 

the Lattice Boltzmann Simulation. The main problem with these models is that they 

require huge processing power and their convergence is very slow and sensitive, so they 

are hardly practical solution.   

In this work, three different cases that cover different flow patterns in microchannels 

will be studied by implementing the first and second order velocity-slip/temperature 
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jump models in order to observe the behavior of the flow so that a certain criteria for the 

use of each of the no-slip, the first order slip and the second order slip models. These 

three cases are; the Jeffery-Hamel flow in microchannels, Fanno flow in circular 

microchannels and basic fluctuating flows in microchannels. The fluctuating flows 

cases are the same four cases studied by Haddad et al. (2005) only this time the second 

order slip/jump model will be used and the results compared to the results for the first 

order model. 
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Chapter Two 

Micro-Flow Governing Equations 

 

As mentioned earlier, in the literature there are two ways used for modeling a flow field, 

either the molecular based model or the continuum approach where the matter is 

assumed continuous and indefinitely divisible. The continuum model, which is 

traditionally applied for fluid flows, is represented by the Navier-Stokes equations. This 

model ignores the molecular nature of gases and liquids and treats the fluid as a 

continuous medium describable in terms of the macroscopic flow quantities such as 

spatial and temporal variations of density, velocity, pressure, and temperature.  

In the current work we are going to use the second, continuum model for which the 

equations are the continuity, momentum and energy conservation principles, which are 

introduced below: 

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥𝑘
 𝜌𝑢𝑘 = 0                                               (2.1) 

𝜌  
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑘

𝜕𝑢𝑖

𝜕𝑥𝑘
 = −

𝜕𝑝

𝜕𝑥𝑖
+ 𝜌𝑔𝑖 +

𝜕

𝜕𝑥𝑘
 𝜇  

𝜕𝑢𝑖

𝜕𝑥𝑘
+

𝜕𝑢𝑘

𝜕𝑥𝑖
 + 𝛿𝑘𝑖 Λ

𝜕𝑢𝑗

𝜕𝑥𝑗
              (2.2) 

𝜌𝑐𝑣  
𝜕𝑇

𝜕𝑡
+ 𝑢𝑘

𝜕𝑇

𝜕𝑥𝑘
 =

𝜕

𝜕𝑥𝑘
 𝑘

𝜕𝑇

𝜕𝑥𝑘
 − 𝑝

𝜕𝑢𝑘

𝜕𝑥𝑘
+ 𝜑                           (2.3) 

𝜑 =
1

2
𝜇  

𝜕𝑢𝑖

𝜕𝑢𝑘
+

𝜕𝑢𝑘

𝜕𝑥𝑘
 

2

+ 𝜆  
𝜕𝑢𝑗

𝜕𝑥𝑗
 

2

                                    (2.4) 

The first equation, Eq.(2.1) is the continuity (conservation of mass) equation. The three 

components of Eq.(2.2) are the conservation of momentum (Navier-Stokes) equations 

for a Newtonian fluid. The third equation, Eq.(2.3),  is the conservation of thermal 
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energy equation In it υ is the dissipation function expressing the irreversible conversion 

of mechanical energy to internal energy as a result of the deformation of the fluid 

element. It is given in Eq.(2.4) from which it can be seen that this term is always 

positive as required by the Second Law of thermodynamics. The second term on the 

right-hand side of Eq.(2.3) is the reversible work done by the pressure as the volume of 

a fluid material element changes. 

In order to be able to solve the above equations for a certain flow situation we need to 

apply a number of initial and boundary conditions. If dealing with a traditional macro 

flow case these conditions are the no-slip boundary condition at the fluid-solid interface 

which is applied to the momentum equation and the no-temperature-jump condition is 

applied to the energy equation.  

Since the continuum model is better known and is mathematically easier to handle than 

alternative molecular models it should be used as long as it is applicable. That is why in 

recent years there has been extensive examination of the validity of the Navier-Stokes 

equations for the new cases that face the scientists. This examination work can be done 

both theoretically and experimentally.  

All this work has shown that the continuum model is fairly accurate as long as local 

properties such as density and velocity can be defined as averages over elements large 

compared with the microscopic structure of the fluid but small enough in comparison 

with the scale of the macroscopic phenomena to permit the use of differential calculus 

to describe them. Additionally, the flow must not be too far from thermodynamic 

equilibrium.
 [16] 

In order to obtain satisfactory results, the shear stress and heat flux must be expressed in 

terms of lower-order macroscopic quantities such as velocity and temperature, and the 
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linear relations are valid only when the flow is near thermodynamic equilibrium. What 

further complicates the matter is that the classical no-slip boundary condition at the 

solid-fluid interface becomes inapplicable before the linear stress-strain relation 

becomes invalid. 

Here the Knudsen number definition has to be introduced as the ratio between the mean 

free path (λ) and the characteristic length (L) and is generally the most important 

parameter determining the flow regime. The different Knudsen number regimes are 

specific for each geometry and flow configuration and so they are determined 

empirically only to serve as a general guidelines for the use of the different models. 

For gases, the mean free path λ is defined as the average distance traveled by molecules 

between consecutive collisions. If an ideal gas is assumed its molecules can be modeled 

as rigid spheres, a relation for the mean free path in terms of temperature T and pressure 

p can be given in the form 

𝜆 =
1

 2𝜋𝑛𝜍2 =
𝑘𝑇

 2𝜋𝑝𝜍2                                                  (2.5) 

where n is the number density (number of molecules per unit volume), σ is the 

molecular diameter, and k is the Boltzmann constant. Based on this definition, the 

continuum approach is applicable as long as characteristic flow dimension L is much 

larger than the mean free path for the gas λ. If this condition is violated, the flow departs 

from the equilibrium and the linear relation between stress and strain rate and the no-

slip velocity condition are no longer valid. Also the linear relation between heat flux 

and temperature gradient and the no-jump temperature condition at a solid-fluid 

interface are no longer accurate when L is much larger than the mean free path for the λ. 
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The characteristic length L can be some overall dimension of the flow geometry, but a 

more precise choice is the scale of the gradient of a macroscopic quantity, as for 

example the density ρ, 

      𝐿 =
𝜌

 
𝜕𝜌

𝜕𝑦
 
                                                               (2.6) 

This all bring us to the definition of the Knudsen number as the ratio between the mean 

free path and the characteristic length as shown in the equation below 

𝐾𝑛 =
𝜆

𝐿
                                                              (2.7) 

It has been shown that the traditional continuum approach validity can be extended by 

modifying the boundary conditions for Kn number values as high as 0.1. 

Another two very important dimensionless parameters in fluid mechanics are the 

Reynolds number and the Mach number, and the Knudsen number can be expressed in 

terms of those two. The Reynolds number is the ratio of inertial forces to viscous forces 

as shown:              

𝑅𝑒 =
𝑉0𝐿

𝜈
                                                            (2.8) 

where Vo is a characteristic velocity and ν is the kinematic viscosity of the fluid. On the 

other hand, the Mach number is the ratio of flow velocity to the speed of sound in the 

fluid 

 𝑀𝑎 =
𝑉0

𝑎0
                                                           (2.9) 

The Mach number can be considered a dynamic measure of fluid compressibility or as 

the ratio of inertial forces to elastic ones. Using the kinetic theory of gases, a relation 

between the mean free path and the viscosity can be given as follows: 



www.manaraa.com

14 
 

𝜈 =
𝜇

𝜌
=

1

2
𝜆𝑣 𝑚                                                        (2.10) 

where µ is the dynamic viscosity, and mv  is the mean molecular speed which is given as 

follows, 

𝑣 𝑚 =  
8

𝜋𝛾
𝑎0                                                        (2.11) 

where γ is the specific heat ratio (i.e. the isentropic exponent). As it can be seen, this 

velocity mv  is higher than the sound speed ao. Combining Eq. (2.7) – (2.11), the 

required relation for Kn is given as: 

𝐾𝑛 =  
𝜋𝛾

2

𝑀𝑎

𝑅𝑒
                                                      (2.12) 

For boundary layer flows, the characteristic length-scale is the shear-layer thickness δ, 

which for laminar flows can be expressed as 

𝛿

𝐿
~

1

 𝑅𝑒
                                                              (2.13) 

𝐾𝑛~
𝑀𝑎

𝑅𝑒𝛿
~

𝑀𝑎

 𝑅𝑒
                                                      (2.14) 

where Reδ is the Reynolds number based on the free stream velocity Vo and the 

boundary layer thickness δ, while Re is based on Vo and the stream wise length-scale L. 

The different Knudsen number regimes are specific for each geometry and flow 

conditions and by so are empirically determined only as an approximate guide. For the  

Knudsen number region close to zero, the transport terms in the continuum momentum 

and energy equations are negligible and so the Navier-Stokes equations are reduced to 

the inviscid Euler equations. At this region heat conduction and viscous diffusion and 

dissipation are both negligible, and the flow can be assumed isentropic (i.e., adiabatic 
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and reversible) from the continuum viewpoint. On the other hand the equivalent 

molecular viewpoint is that the velocity distribution function is everywhere of the local 

equilibrium or Maxwellian form. For larger Kn numbers regime, rarefaction effects 

become significant, and the continuum approach becomes useless. Based on a number 

of experimental and theoretical works, it has been established that the traditional no-

slip/no-jump boundary conditions gives accurate results for the range of Kn<0.001. At 

larger values of Kn the assumption of equilibrium at the fluid-solid interface is no 

longer true and some velocity-slip and temperature-jump occurs so the model has to be 

modified in order to take then into consideration. The flow in microchannels falls into 

the later category so for it the modified velocity-slip/temperature-jump models should 

be used. Navier-Stokes equation with first order velocity-slip/temperature-jump are 

considered to be applicable for the range between 0.001<Kn<0.1. For the transition 

region which falls in the range between 0.1<Kn <10 there are two options, either using 

the Navier-Stokes equations which can still be applied if second or higher order 

slip/jump boundary conditions are applied, or use one of the molecular-based models. 

After gad Al-Hak (1999) the different Knudsen number regimes can be summarized as 

follows:
 [14, 15]

 

Euler equations (neglect molecular diffusion) Kn → 0 (Re → ∞) 

Navier-Stokes equations with no-slip boundary conditions Kn ≤ 10
-3

 

Navier-Stokes equations with slip boundary conditions 10
-3 

≤ Kn ≤ 10
-1

 

Transition regime 10
-1 

≤ Kn ≤ 10 

Free-molecule flow Kn > 10 
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Fig.2.1 Knudsen number regimes.
 [17]

 

 

Usually, the no-velocity-slip at the wall boundary condition is applied to the momentum 

equation while no-temperature-jump boundary condition is applied to the energy 

equation. But these two boundary conditions are applicable only if the fluid flow and 

the wall are at thermodynamics equilibrium. In order for this equilibrium to exist, there 

has to be an infinitely high frequency of collisions between the fluid particles and the 

solid surface. In practice, for the cases of gas flows, for the region of Kn<0.001 this 

condition is satisfied and the no-slip/no-jump model gives accurate results. But for Kn 

numbers higher than that, the gas becomes too rarefied and the collision frequency is 

not high enough to ensure equilibrium so the boundary conditions must be modified to 

accommodate the velocity-slip/temperature-jump that takes place. Since flow in 

microchannels is usually modeled using the velocity-slip/temperature-jump model, next 

the appropriate boundary conditions will be introduced.  

In both liquid and gasses, for the linear Navier boundary condition the tangential 

velocity slip at the wall 
w

u   and the local shear are related as following: 

 ∆𝑢 𝑤 = 𝑢𝑓𝑙𝑢𝑖𝑑 − 𝑢𝑤𝑎𝑙𝑙 = 𝐿𝑠
 𝜕𝑢

𝜕𝑦
 
𝑤

                                    (2.15) 
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where sL is the constant slip length, and 
w

yu   is the strain rate computed at the wall. 

If a force balance is applied on a gas element near to the wall, the following relation for 

the slip velocity can be obtained 

𝑢𝑔𝑎𝑠 − 𝑢𝑤𝑎𝑙𝑙 = 𝜆  𝜕𝑢

𝜕𝑦
 
𝑤

                                           (2.16) 

where λ is the molecule mean free path. The right-hand side can be considered to be the 

first term in an infinite Taylor series, sufficient if the mean free path is small enough. 

However, for real walls, some of the molecules are reflected diffusely while some are 

reflected specularly. 

In order to take this into consideration, a tangential-momentum-accommodation 

coefficient v  has to be defined as the fraction of molecules reflected diffusively. This 

coefficient depends on the fluid, the solid and the surface finish, and is found 

experimentally to be between 0.2-0.8. The lower limit represents exceptionally smooth 

surfaces while the upper limit is typical for most practical surfaces. Thus the final 

expression for the velocity-slip for an isothermal wall as derived by Maxwell (1879) 

becomes 

  𝑢𝑔𝑎𝑠 − 𝑢𝑤𝑎𝑙𝑙 =
2−𝜍𝑣

𝜍𝑣
𝜆  𝜕𝑢

𝜕𝑦
 
𝑤

                                         (2.17) 

When σv=0 the slip velocity is unbounded, while when σv=1 equation (2.17) reverts to 

equation (2.16). For the case of ideal gas flow under the effect of wall-normal and 

tangential temperature gradients, the complete slip-flow and temperature-jump 

boundary conditions as given by Smoluchowski (1898) are 

𝑢𝑔𝑎𝑠 − 𝑢𝑤𝑎𝑙𝑙 =
2−𝜍𝑣

𝜍𝑣
𝜆  𝜕𝑢

𝜕𝑦
 
𝑤

+
3

4

𝜇

𝜌𝑇𝑔𝑎𝑠

 𝜕𝑇

𝜕𝑥
 
𝑥
                               (2.18) 
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𝑇𝑔𝑎𝑠 − 𝑇𝑤𝑎𝑙𝑙 =
2−𝜍𝑇

𝜍𝑇
 

2𝛾

𝛾+1
 

𝜆

𝑃𝑟
 𝜕𝑇

𝜕𝑦
 
𝑤

                                     (2.19) 

where x and y are the streamwise and normal coordinates, ρ and μ are the fluid density 

and viscosity respectively, Tgas is the temperature of the gas adjacent to the wall, Twall is 

the wall temperature, τw is the shear stress at the wall, Pr is the Prandtl number and γ is 

the gas specific heat ratio. The tangential-momentum-accommodation coefficients σv 

and the thermal-accommodation coefficient σT are given by 

𝜍𝑣 =
𝜏𝑖−𝜏𝑟

𝜏𝑖−𝜏𝑤
                                                          (2.20) 

𝜍
𝑇=

𝑑𝐸 𝑖−𝑑𝐸 𝑟
𝑑𝐸 𝑖−𝑑𝐸 𝑤

                                                         (2.21) 

where the subscripts i, r and w stand for incident, reflected and solid wall conditions 

respectively, τ is tangential momentum flux and dE is an energy flux.  

While the Navier-Stokes equation with the first order velocity-slip/temperature-jump 

boundary conditions are applicable to the range between 0.001 < Kn < 0.1, for higher 

values of Kn second-order or higher velocity-slip/temperature-jump boundary 

conditions should be applied to the Navier-Stokes equation if it is to be used in the 

transition region (the range between 0.1<Kn<10). For example, for the isothermal wall 

case, a higher-order slip velocity condition has been proposed by Beskok (1994) in the 

form    

𝑢𝑔𝑎𝑠 − 𝑢𝑤𝑎𝑙𝑙 =
2−𝜍𝑣

𝜍𝑣
 𝜆  𝜕𝑢

𝜕𝑦
 
𝑤

+
𝜆2

2!
 𝜕

2𝑢

𝜕𝑦2 
𝑤

+
𝜆3

3!
 𝜕

3𝑢

𝜕𝑦3 
𝑤

+ ⋯                    (2.22) 

In similar manner a higher-order temperature-jump boundary condition has been 

derived by Beskok (1996) for which the Taylor series in dimensionless form looks like 

this: 
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   𝑇𝑔𝑎𝑠
∗ − 𝑇𝑤𝑎𝑙𝑙

∗ =
2−𝜍𝑇

𝜍𝑇
 

2𝛾

𝛾+1
 

1

𝑃𝑟
  𝐾𝑛

𝜕𝑇∗

𝜕𝑦∗
 
𝑤

+
𝐾𝑛2

2!
 𝜕

2𝑇∗

𝜕𝑦∗2
 
𝑤

+ ⋯                   (2.23) 

Implementing the above high-order boundary conditions in numerical simulations is 

rather difficult since second and higher order derivatives of velocity and temperature 

cannot be accurately computed at the wall. That’s why a number of scientists have 

proposed alternative higher-order boundary conditions derived using asymptotic 

analysis using high-order slip coefficients determined from the presumably known no-

slip solution which avoids the computational difficulties associated with the above 

equations. 
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Chapter Three 

Mathematical Formulation and Solution Methods 

 

In this chapter, the mathematical formulation and analysis for the three cases will be 

derived and solved by implementing the first and second order velocity-slip/temperature 

jump models in order to observe the behavior of the flow so that a certain criteria for the 

use of each of the no-slip, the first order slip and the second order slip models. These 

three cases are; the Jeffery-Hamel flow in microchannels, four basic fluctuating flows in 

microchannels and Fanno flow in microchannels.  

 

3.1. Jeffery-Hamel Flow in Microchannels 

In this first section the effect of implementing the velocity-slip boundary conditions on 

the case of radial flow caused by a line source or sink is investigated. This 

problem was first discussed by Jeffery (1915) and independently by Hamel 

(1917) and so the name. Up to our knowledge, so far Jeffery-Hamel flow has not 

been investigated in micro-domains. The objective is to investigate the effect of both the 

first order and the second order slip models on the hydrodynamic behavior of micro-

convergent/divergent channels. This is attained by establishing criteria that justifies the 

use of the first order slip model instead of the second order slip model. 

3.1.1 Governing Equations 

Referring to the schematic diagram shown in Fig.1, the flow is considered in polar coordinates 

(r, θ), generated by a source (or sink) at the origin and bounded by solid walls at θ = ±α.  
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Assuming that the flow is purely radial, uθ = 0 and from the continuity equation in polar 

coordinates for a steady incompressible flow with constant properties is reduced to:  

      
1

𝑟

𝜕

𝜕𝑟
 𝑟𝑢𝑟 = 0,            or           𝑟𝑢𝑟 = 𝑓𝑐𝑛 𝜃                                         (3.1) 

It is expected that ur will have a local maximum umax,  at θ = 0. Then a convenient 

nondimensionalization for this problem is 
[42]

 

 

 

Figure 3.1: Jeffery-Hamel flow problem schematic diagram.
 [42]

 

 

𝜂 =
𝜃

𝛼
,          

𝑢𝑟

𝑢𝑚𝑎𝑥
= 𝑓(𝜂)                                                       (3.2) 

The momentum equations in polar coordinates, for uθ = 0, are 

𝑢𝑟
𝜕𝑢𝑟

𝜕𝑟
= −

1

𝜌

𝜕𝑝

𝜕𝑟
+ 𝜈  

𝜕2𝑢𝑟

𝜕𝑟2 +
1

𝑟

𝜕𝑢𝑟

𝜕𝑟
−

𝑢𝑟

𝑟2 +
1

𝑟2

𝜕2𝑢𝑟

𝜕𝜃2                                        (3.3.a) 
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0 = −
1

𝜌𝑟

𝜕𝑝

𝜕𝜃
+

2𝜈

𝑟2

𝜕𝑢𝑟

𝜕𝜃
                                                           (3.3.b) 

3.1.2 Solution 

The pressure can be eliminated by cross -differentiation and introducing the 

variables η and f (η). The result is a third-order nonlinear differential equation for f 

𝑓 ′′′ + 2𝑅𝑒 ∙ 𝛼𝑓𝑓 ′ + 4𝛼2𝑓 ′ = 0                                          (3.4) 

Where the characteristic Reynolds number of the flow is defined as  

𝑅𝑒 =
𝑢𝑚𝑎𝑥 𝑟𝛼

𝜈
                                                (3.5) 

 The boundary conditions are assumed symmetric flow with a maximum at the centerline:  

𝑓 0 = 1                                                                      (3.6) 

and the velocity-slip boundary conditions at the wall are: 

for the first order slip mode          𝑓 −1 = 𝑓 +1 = −
2−𝜍𝑣

𝜍𝑣
𝐾𝑛 ∙ 𝑓 ′(1)                             (3.7.a) 

and for the second order model   𝑓 −1 = 𝑓 +1 = −
2−𝜍𝑣

𝜍𝑣
 𝐾𝑛 ∙ 𝑓 ′ 1 +

𝐾𝑛2

2
∙ 𝑓 ′′(1)    (3.7.b) 

Where the characteristic Knudsen number of the flow is defined as  

𝐾𝑛 =
𝜆

𝑟𝛼
                                                    (3.8) 

The condition given in Eq. (3.6) can be replaced by the symmetry requirement 𝑓 ′ 0 = 0 and 

confine the analysis to the upper half of the wedge region. Since Eq. (3.4) is nonlinear, it is next 

solved numerically by reducing it to a system of first order equations: 

𝐹0
′  𝜂 = 𝐹1 𝜂                                                                                                            (3.9.a) 

𝐹1
′  𝜂 = 𝐹2 𝜂                                                                                                           (3.9.b) 

𝐹2
′  𝜂 = −2𝑅𝑒𝛼 ∙ 𝐹0 𝜂 𝐹1 𝜂 − 4𝛼2 ∙ 𝐹1 𝜂                                                            (3.9.c) 
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with the boundary conditions as following: 

𝐹0 0 = 1                                                                                                                (3.10.a) 

𝐹1 0 = 0                                                                                                                (3.10.b) 

𝐹0 1 = −
2−𝜍𝑣

𝜍𝑣
𝐾𝑛 ∙ 𝐹1(1),   or   𝐹0 1 = −

2−𝜍𝑣

𝜍𝑣
 𝐾𝑛 ∙ 𝐹1 1 +

𝐾𝑛2

2
∙ 𝐹2(1)      (3.10.c)   

Another parameter that is to be studied here is the skin friction coefficient Cf which depends on 

the shear at the wall τw which is defined as 

𝜏𝑤 = −𝜇
𝜕𝑢

𝜕𝑦
                                                                    (3.11) 

where y is the normal to the wall.  

Eq. 3.11 is then rewritten in dimensionless form in terms of Cf and Re as following: 

𝐶𝑓 = −
2

𝑅𝑒
𝑓 ′ 𝜂      at    η = 1                                           (3.12) 

The solution of Eq.(3.9) and (3.10) for a range of Re·α and Kn numbers gives the velocity 

profiles plots, and the solution of Eq.(3.12) gives the skin friction coefficient. From these results 

the differences among the three models are found for the specified range of Kn numbers. Also 

the separation (reversal) of the flow concept is further investigated.  

 

3.2 Basic Gaseous Fluctuating Micro-Flows 

In this part, the effect of adding the second order term to the velocity-slip/temperature-

jump boundary conditions on the solution of four cases in which the driving force is 

fluctuating harmonically is studied.  The four cases are the transient Couette flow, the 

pulsating Poiseuille flow, the Stoke’s second problem and the transient natural 

convection flow. So far fluctuating flow in micro-domains has been investigated only by 
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Haddad et al. (2005) but only using the first order velocity-slip/temperature-jump boundary 

conditions, so the effect of adding the second order term to the velocity-slip/temperature-

jump boundary condition has on the solution of these four cases will be examined and 

compared with the results for the first order model solution. The objective is to try and 

establish a certain criteria as for when using the more complicated model becomes 

viable. 

3.2.1 Governing Equations 

The scope of the present work should be to investigate the effect of the frequency (ω) of the 

driving force on the velocity-slip and temperature-jump at the wall for four different flow 

settings using the second order slip/temperature-jump model and compare it with the results for 

the first order slip/temperature-jump model from a previous works on the subject. The 

geometries for the four cases we are interested in are shown in Fig.3.2. The flow in all of them 

is laminar, incompressible flow of a Newtonian fluid with constant properties. Here we are only 

interested in the slip flow regime, which is for 10
-3

≤Kn≤10
-1

. These four cases are shown next. 

3.2.1.1 - Case 1: Transient Couette gas flow between parallel plates with infinite length with 

one of the plates moving with fluctuating velocity (u=sin(ωt)) in its plane and the other plate 

remaining stationary. The geometry of the problem is shown in Fig.(3.2.a) and the governing 

equations and boundary conditions for this case and the second order velocity-slip for this case 

are as following: 

𝜕𝑈

𝜕𝜏
=

𝜕2𝑈

𝜕𝑌 2
,                                                          (3.13)  

with boundary conditions  

𝑈 𝜏, 0 =
2−𝜍𝑣

𝜍𝑣
 𝐾𝑛  𝜕𝑈

𝜕𝑌
 
𝑌=0

+
𝐾𝑛2

2
 𝜕

2𝑈

𝜕𝑌 2 
𝑌=0

                             (3.14) 

𝑈 𝜏, 1 − sin 𝜔𝜏 = −
2−𝜍𝑣

𝜍𝑣
 𝐾𝑛  𝜕𝑈

𝜕𝑌
 
𝑌=1

+
𝐾𝑛2

2
 𝜕

2𝑈

𝜕𝑌 2  
𝑌=1

                       (3.15) 
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Figure 3.2: Basic gaseous fluctuating micro-flows schematic diagram 

 

3.2.1.2 - Case 2: The pulsating Poiseuille gas flow between two infinite length parallel 

plates shown in Fig.(3.2.b). Here the plates are stationary while the driving pressure 

gradient is fluctuating in a sinusoidal manner (dp/dx=sin(ωt)). The governing equations 

and boundary conditions for this case for the second order velocity-slip at the walls and 

symmetry at the centerline are as following: 

𝜕𝑈

𝜕𝜏
= sin 𝜔𝜏 +

𝜕2𝑈

𝜕𝑌 2                                              (3.16)  

with boundary conditions  

𝜕𝑈

𝜕𝑌
 𝜏, 0 = 0                                                    (3.17) 

𝑈 𝜏, 1 = −
2−𝜍𝑣

𝜍𝑣
 𝐾𝑛  𝜕𝑈

𝜕𝑌
 
𝑌=1

+
𝐾𝑛2

2
 𝜕

2𝑈

𝜕𝑌 2
 
𝑌=1

                                (3.18) 
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3.2.1.3 - Case 3: The Stokes second problem, shown in Fig.(3.2.c) involves a single 

plate of infinite length shaking in a sinusoidal manner (u=sin(ωt)) in its own plane in an 

initially stationary fluid domain. The governing equations and boundary conditions for this 

case and the second order velocity-slip at the wall are as following: 

𝜕𝑈

𝜕𝜏
=

𝜕2𝑈

𝜕𝑌 2                                                             (3.19) 

with boundary conditions  

𝑈 𝜏, 0 =
2−𝜍𝑣

𝜍𝑣
 𝐾𝑛  𝜕𝑈

𝜕𝑌
 
𝑌=0

+
𝐾𝑛2

2
 𝜕

2𝑈

𝜕𝑌 2 
𝑌=0

                                 (3.20) 

𝑈 𝜏, ∞ = 0                                                          (3.21) 

3.2.1.4 - Case 4: The transient natural convection gas flow between two vertical infinite 

length stationary parallel plates, which are subjected to fluctuating temperature variation 

(θ=sin(ωt)). The problem geometry is shown in Fig.(3.2.d) while the governing equations and 

boundary conditions for this case with the second order velocity-slip/temperature-jump at the 

wall, and symmetry conditions at the centerline are as following: 

𝜕𝑈

𝜕𝜏
=

𝜕2𝑈

𝜕𝑌 2
+ 𝜃                                                     (3.22) 

𝜕𝜃

𝜕𝜏
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑌 2                                                       (3.23) 

with boundary conditions  

𝜕𝑈

𝜕𝑌
 𝜏, 0 = 0                                                       (3.24) 

𝜕𝜃

𝜕𝑌
 𝜏, 0 = 0                                                       (3.25)  

𝑈 𝜏, 1 = −
2−𝜍𝑣

𝜍𝑣
 𝐾𝑛  𝜕𝑈

𝜕𝑌
 
𝑌=1

+
𝐾𝑛2

2
 𝜕

2𝑈

𝜕𝑌 2  
𝑌=1

                              (3.26)     
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𝜃 𝜏, 1 − sin 𝜔𝜏 = −
2−𝜍𝑣

𝜍𝑣
 

2𝛾

1+𝛾
 

1

𝑃𝑟
 𝐾𝑛  𝜕𝑈

𝜕𝑌
 
𝑌=1

+
𝐾𝑛2

2
 𝜕

2𝑈

𝜕𝑌 2 
𝑌=1

              (3.27) 

Here, just like in the previous works, the flow will be assumed hydrodynamically fully 

developed, i.e. the change of U with X is zero (dU/dX=0). The change of temperature θ 

with respect to X is also zero (dθ/dX=0).   

3.2.2 Solution 

After all the geometries, governing equations and boundary conditions are specified we 

proceed with obtaining the solutions for the four cases above. For these, an exact 

solution can be obtained by assuming the solution to be of the form: 

𝑈 𝜏, 𝑌 = 𝐼𝑚 𝑒𝑖𝜔𝜏 𝑉(𝑌) ,                                           (3.28) 

Θ 𝜏, 𝑌 = 𝐼𝑚 𝑒𝑖𝜔𝜏 𝑊 𝑌  .                                            (3.29) 

Here, “Im” stands for the imaginary part of the assumed complex solution and 𝑖 =  −1. 

By substituting this assumed solution in the governing equation for each case we find 

the four solutions to be as follows 

Case 1:                         𝑉 𝑌 =
(1+𝑚2)𝑠𝑖𝑛𝑕  𝑖𝜔𝑌 +𝑚1𝑐𝑜𝑠𝑕( 𝑖𝜔𝑌)

 𝑚1
2−𝑚2

2+1 𝑠𝑖𝑛𝑕  𝑖𝜔 +2𝑚1𝑐𝑜𝑠𝑕( 𝑖𝜔 )
 ,                           (3.30) 

 

Case 2:                    𝑉 𝑌 =
1

𝑖𝜔
 1 −

cosh ⁡( 𝑖𝜔𝑌)

𝑚1 sinh   𝑖𝜔 +(1+𝑚2)cosh ⁡( 𝑖𝜔 )
 ,                          (3.31) 

 

Case 3:                                    𝑉 𝑌 =
𝑒− 𝑖𝜔 𝑌

1+𝑚1−𝑚2
,                                                      (3.32) 
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Case 4:  

                              
    

 

1 2

3 4

1 2

1
( )

Pr sinh( Pr ) 1 cosh( Pr )

sinh( Pr ) (1 )cosh( Pr )
cosh( ) cosh( Pr )

sinh( ) 1 cosh( )

V Y
i i n i n i

m i m i
i Y i Y

m i m i

   

 
 

 

 
 

  
    

   
 

   

             (3.33)       

 

and                                      𝑊 𝑌 =
 cosh ⁡( 𝑖𝜔𝑃𝑟 𝑌)

𝑛1 sinh   𝑖𝜔𝑃𝑟  +(1+𝑛2cosh ⁡( 𝑖𝜔𝑃𝑟 )
                       (3.34). 

 

where  

 

 

 

 

3.3 Fanno Flow in Microchannels 

In this section the effect of implementing the velocity-slip boundary conditions on the 

case of the adiabatic flow in a constant-area duct with friction, also known as Fanno 

flow is investigated. The classical Fanno flow case with the no-slip boundary conditions 

is standard issue in most of the fluid dynamics textbooks (John (1984)) but up to our 

knowledge it has not been investigated using any of the velocity-slip models so far. The 

objective of the present work so, is to investigate the effect of both the first order and 

the second order slip models on the hydrodynamic behavior of compressible flow in 

𝑚1 =
 2−σv

σv
𝐾𝑛 𝑖𝜔, 

 

𝑚2 =
 2−σv

σv

𝐾𝑛2

2
 𝑖𝜔 , 

 

𝑚3 =
 2−σv

σv
𝐾𝑛 ∙  𝑖𝜔𝑃𝑟, 

 

𝑚4 =
 2−σv

σv

𝐾𝑛2

2
 𝑖𝜔𝑃𝑟 , 

 

𝑛1 =
 2−σT

σT
 

2𝛾

𝛾+1
 

𝐾𝑛

𝑃𝑟
 𝑖𝜔𝑃𝑟, 

 

𝑛2 =
 2−σT

σT
 

2𝛾

𝛾+1
 

𝐾𝑛2

2𝑃𝑟
 𝑖𝜔𝑃𝑟 . 
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microchannels. This aims to establish criteria that justify the use of the first order slip 

model instead of the second order slip model. 

3.3.1 Governing Equations 

In order to derive a relation for a compressible flow in microchannel, the control 

volume shown in Fig.(3.3) is considered. When the momentum equation is applied to 

the differential element shown the resulting equation is: 

−𝐴𝑑𝑝 − 𝜏𝑓 𝑑𝑥 
4𝐴

𝐷
= 𝜌𝐴𝑉𝑑𝑉                                         (3.35) 

 

Figure 3.3: Fanno flow problem schematic diagram.
 

 

Where τf is the shear stress due to the wall friction and D is the pipe diameter. By 

introducing the friction factor 𝑓 = 4𝜏𝑓/ 1/2𝜌𝑉2  and the Mach number definition 

(𝑉 = 𝑀 𝛾ℛ𝑇), the whole equation divided by p, Eq. 3.35 can be rewritten as  

𝑑𝑝

𝑝
+

1

2
𝛾𝑀2𝑓

𝑑𝑥

𝐷
+ 𝛾𝑀2 𝑑𝑉

𝑉
= 0                                              (3.36) 
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Now in order to obtain an expression for the Mach number M in terms of distance x, the 

dp/p and dV/V terms must be replaced. For that, first the ideal-gas equation of state 

(ρ=p/RT) is used, the logarithm is taken and differentiated resulting in the following 

equation 

𝑑𝑝

𝑝
=

𝑑𝜌

𝜌
+

𝑑𝑇

𝑇
                                                          (3.37) 

In the same manner, using the above mentioned Mach number definition (𝑉 =

𝑀 𝛾ℛ𝑇), taking the logarithm an then differentiating results 

𝑑𝑉

𝑉
=

𝑑𝑀

𝑀
+

1

2

𝑑𝑇

𝑇
                                                          (3.38) 

Since the flow considered is adiabatic, the stagnation temperature (𝑇0 = 𝑇 1 + 𝛾−1

2
𝑀2 ) 

is constant, so if the definition is used as above it will result: 

𝑑𝑇

𝑇
+

𝑑 1+
𝛾−1

2
𝑀2 

1+
𝛾−1

2
𝑀2

= 0                                                    (3.39) 

After combining the Eq.(3.36), (3.37), (3.38) and (3.39) and a lengthy procedure of 

rearrangement and integration
 [24]

 the resulting equation can be rewritten in the form 

𝑓𝐿𝑚𝑎𝑥

𝐷
=  

𝛾+1

2𝛾
 ln  

 𝛾+1 𝑀2

2 1+
𝛾−1

2
𝑀2 

 +  
1−𝑀2

𝛾𝑀2
                                      (3.40) 

where f is known as the Darcy friction factor.  For this equation, the M is the inlet Mach 

number and the outlet Mach number for L=Lmax is considered to be M=1. Since it is 

expected that for microchannels f will differ from the (64/Re) value for a pipe obtained 

using the no-slip model, next f should be derived as a function of Kn using the first and 

second order velocity-slip models.  
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3.3.2 Solution 

To obtain the solution for the friction factor f in microchannels the geometry of the 

problem shown in Fig.(3.3) is considered again. Although the flow at high Mach 

numbers (supersonic) is turbulent, for the purpose of obtaining the skin friction 

coefficient it is common practice in the literature to assume that the friction coefficient 

for turbulent flow is approximately the same as for the laminas flow. This considerably 

simplifies the mathematical model and is justified by the fact that even for turbulent 

flows, the area just adjacent to the wall has laminar boundary behavior (laminar sub-

layer) and so the velocity gradient at the wall is basically the same and so is the skin 

friction coefficient.  So now, for a constant area circular pipe with a radius R and 

assuming a fully developed, laminar flow, the momentum equation is reduced to the 

following: 

1

𝑟

𝑑

𝑑𝑟
 𝑟

𝑑𝑢

𝑑𝑟
 =

1

𝜇

𝑑𝑝

𝑑𝑥
= 𝑐𝑜𝑛𝑠𝑡                                               (3.41) 

This is solved by integrating twice and applying the appropriate boundary conditions. 

Even though the velocity at the centerline is not known, from physical considerations it 

is known that the velocity must be finite at r=0, which is our first boundary condition. 

Now, the second boundary condition, the velocity at the wall must be applied. Here, the 

slip velocity at the wall will be introduced, once using the first order slip model and 

once using the second order model. So for the first order slip model the velocity at r=R 

is: 

𝑢 𝑅 = −
2−𝜍𝑣

𝜍𝑣
𝜆  

𝜕𝑢

𝜕𝑟
 

𝑅
                                                (3.42.a) 

and for the second order slip model: 
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𝑢 𝑅 = −
2−𝜍𝑣

𝜍𝑣
 𝜆  

𝜕𝑢

𝜕𝑟
 

𝑅
+

𝜆2

2
 

𝜕2𝑢

𝜕𝑟2 
𝑅
                                     (3.42.b) 

From these two conditions, the constants of integration can be found and the solutions 

for the velocity profiles for the two velocity-slip models are found. For the first order 

model the velocity is given by: 

𝑢 𝑟 =
1

4𝜇
 

𝑑𝑝

𝑑𝑥
  𝑟2 − 𝑅2  

2−𝜍𝑣

𝜍𝑣
∙ 2𝐾𝑛 + 1                              (3.43.a) 

and for the second order model the velocity is: 

𝑢 𝑟 =
1

4𝜇
 

𝑑𝑝

𝑑𝑥
  𝑟2 − 𝑅2  

2−𝜍𝑣

𝜍𝑣
∙  2𝐾𝑛 + 𝐾𝑛2 + 1                      (3.43.b) 

Once the velocity profiles are found a number of additional features of the flow can be 

derived from them. Also, the shear stress at the wall 𝜏𝑤 = −𝜇  
𝑑𝑢

𝑑𝑟
 

𝑅
 can be derived 

from the velocity profiles, so when the first order slip and the second order slip models 

are used the shear stress at the wall is given for the first and second order model 

respectively by 

𝜏𝑤 =
4𝜇𝑉 

𝑅 
2−𝜍𝑣

𝜍𝑣
∙4𝐾𝑛+1 

        and        𝜏𝑤 =
4𝜇𝑉 

𝑅 
2−𝜍𝑣

𝜍𝑣
∙ 4𝐾𝑛+2𝐾𝑛2 +1 

               (3.44) 

where 𝑉  is the mean velocity of the flow.  Finally, the skin friction coefficient 𝐶𝑓 =
2𝜏𝑤

𝜌𝑉 2 

can be obtained. The skin friction coefficient for the first order and second order slip 

models are given respectively by: 

𝐶𝑓 =
16

𝑅𝑒

1

 
2−𝜍𝑣

𝜍𝑣
∙4𝐾𝑛+1 

          and         𝐶𝑓 =
16

𝑅𝑒

1

 
2−𝜍𝑣

𝜍𝑣
∙ 4𝐾𝑛+2𝐾𝑛2 +1 

                  (3.45) 
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As it can be seen from Eq. (11), for microchannels Cf ( and consequently f=4Cf) is a 

function of both Re and Kn numbers, so next the effect of changing Kn number will be 

investigated for the two slip models and compared to the no-slip model results.  

 

3.4 Solution Methodology 

Since the resulting equations are complex and hard to evaluate some type of computer 

software had to be used in order to obtain the required results. For the purposes of this 

work, Mathsoft’s Mathcad software was used both for its versatility and ease of use. 

1. For the first case, the Jeffery-Hamel flow, the resulting system of first order 

ordinary differential equations. Using Mathcad’s built in “odesolve” command 

which is based on the fourth order Runge-Kutta method and applying it in a solve 

block, the domain 0 ≤ η ≤ 1 was divided to 1000 steps and iterations were made 

until the error in the evaluation of f and f ‘ dropped below 0.001. The resulting 

values were used to plot the velocity profiles and to obtain the plots for the 

differences between the three slip models.  

2. For the second sections, the four basic fluctuating gas flows, although the equations 

3.30 through 3.34 are obtained analytically, they involve complex numbers and are 

very hard to evaluate. This is why the software was used here also to evaluate and 

plot the velocity and temperature profiles at a range of frequency values and to 

obtain from them the differences and comparison figures.   

3. For the third case, the Fanno flow in microchannels, after equations 3.40 and 3.45 

were obtained analytically, the software was used to evaluate the Fanno flow lines 

and the friction coefficient plots for a large range of Mach and Knudsen numbers, 

and from them to obtain the plots for the differences between the three slip models. 
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Chapter Four 

Results and Discussion 

4.1 Jeffery-Hamel Flow in Microchannels 

The classical Jeffery-Hamel flow case with no-slip boundary conditions has been 

studied extensively with the most noticeable contribution made by Rosenhead (1940) 

who summarized his findings from which the following conclusions have been 

extracted. For π/2<α<π, a solution with pure outflow is impossible, and pure-

inflow solutions are limited in certain respects. Also for α<π/2, pure inflow is 

always possible and tends at large Re to have boundary-layer behavior, while 

pure outflow is limited to certain small Re whose approximate range is Re<10.31/α.  

Also since the most practical application of this flow is to large Re and small α in 

the rest of the work, the study will be concentrated on the region α<π/2 and Re>>α. 

Fig.4.1 represents the classical Jeffery-Hamel flow solution with no-slip 

boundary conditions which serves as a comparison for the next figure, Fig.4.2, 

which recreates the same conditions but using the first order slip model at 

Kn=0.02. It can be seen from the two figures that in the no-slip solution, as the 

name implies the velocity at the wall is always zero, no matter what the Re·α 

parameter value is, while for the first order slip model, there is a velocity slip 

which is small for Re·α>0 (outflow) and the slip starts to increase as Re·α 

become smaller and then negative Re·α <0 (inflow). 

The next five figures, Fig.4.3-4.7 show the velocity profiles resulting from the 

three models, the no-slip model, the first order and the second order velocity-

slip  
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Figure 4.1: Velocity profiles for Jeffery-Hamel flow at Re>>α with no slip boundary 

conditions.
 [34]

 

Figure 4.2: Velocity profiles for Jeffery-Hamel flow at Re>>α with first order velocity-

slip boundary condition at Kn=0.02 
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models at different Re·α and for different Kn numbers. Fig.4.3 and Fig.4.4 show 

the velocity profiles for Re·α=-10 and Re·α=-5 respectively which is an inflow. 

What can be seen from those two figures is that increasing the Kn number will 

increase the velocity slip at the wall. The difference between the no-slip model 

and the two slip models is small up to a Kn=0.01 after which it becomes 

significant. Also the difference between the first order slip and the second order 

slip models is relatively small up to about Kn=0.05 after which it becomes 

noticeable. 

The next figure (Fig.4.5) shows the velocity profiles at Re·α=0, and from it can 

be seen here that the difference between the no-slip model and the two slip 

models is negligible all the way up to Kn=0.01 and becomes important only at 

larger values of Kn. What differentiates this figure from the two above is first, 

that the slip at the wall is smaller in magnitude than in the previous two figures 

and second, that the difference between the first order slip and the second order 

slip models is negligible across the entire Kn number range explored.  

Figures 4.6 and 4.7 compare the velocity profiles for the three models for 

Re·α=+5 and Re·α=+10 respectively which represents outflow. Fig.4.6 shows 

that the difference between the no-slip model and the two slip models is very 

small for Kn<0.05 and also that the difference between the first order slip and 

the second order slip models is negligible across the entire Kn number range 

explored. On the other hand Fig.4.7 shows a slightly different behavior. As it 

can be seen, the velocity profiles for the three models are so close that they 

cannot be differentiated from one another, but the interesting thing here is that 

the second order model predicts a negative slip velocity at the wall as Kn 

increases which indicates separation of the flow at that point.  
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Figure 4.3: Comparison of the velocity profiles for Jeffery-Hamel flow at Re·α=-10 

using the three models, no-slip, first order and second order velocity-slip boundary 

conditions. 

 

Figure 4.4: Comparison of the velocity profiles for Jeffery-Hamel flow at Re·α=-5 using 

the three models, no-slip, first order and second order velocity-slip boundary conditions. 
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Figure 4.5: Comparison the velocity profiles for Jeffery-Hamel flow at Re·α=0 using the 

three models, no-slip, first order and second order velocity-slip boundary conditions. 

Figure 4.6: Comparison of the velocity profiles for Jeffery-Hamel flow at Re·α=+5 

using the three models, no-slip, first order and second order velocity-slip boundary 

conditions. 
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Figure 4.7.a: Comparison of the velocity profiles for Jeffery-Hamel flow at Re·α=+10 

using the three models, no-slip, first order and second order velocity-slip boundary 

conditions. 

Figure 4.7.b: Comparison of the velocity profiles for Jeffery-Hamel flow at Re·α=+10 

and Kn = 0.1 near the wall for the purpose of clarification of the backflow occurrence 

using the three models, no-slip, first order and second order velocity-slip boundary 

conditions.  
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The flow separation is well documented case in the Jeffery-Hamel flow with no 

slip boundary conditions. As it was seen in figures 4.1, 4.6 and 4.7, for the 

outflow the velocity profiles become S-shaped as a result of the change in sign 

of the streamwise pressure gradient. For inflow, the pressure p decreases in the 

direction of the flow (favorable pressure gradient) and there is no separation, 

while for the outflow, the pressure increases downstream (adverse pressure 

gradient) and causes inflection in the velocity profile until at some point a 

separation occurs. For the no-slip boundary conditions this separation point is 

function of Re·α and has been found by Millsaps and Pohlhausen (1953) to 

occur at Re·α=10.31, but as it can be seen from Fig.4.7, the second order slip 

model predicts that separation can occur at smaller Re·α if the Kn number is 

sufficiently large. 

Assuming that a difference between the no-slip model and the first order 

velocity-slip of 10% or more is significant enough to justify the use of the 

velocity-slip model, criteria for the use of the first order slip model can be set. 

By examining Fig.4.8, it can be seen that for Re·α=-10 the difference reaches 

10% at Kn=0.01, for Re·α=-5 at Kn=0.012, for Re·α=0 at Kn=0.02 and for 

Re·α=+5 the difference reaches 10% at Kn=0.04. As for the Re·α=+10 the 

difference between the three models is negligible but since the second order slip 

model predicts separation it will be studied more extensively later.  

Also of interest is the difference between the first order slip and the second order slip 

models. This is why the normalized difference (∆=  
𝑢1 1 −𝑢2 1 

𝑢1 1 
 , where the 1 and 2 

subscripts stand for first and second order slip model respectively) between the two 

models is shown in Fig.4.9. 
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Figure 4.8: Comparison between the first and the second order models predicted slip 

velocity at the wall. 

Figure 4.9: Normalized difference between the first and the second order models 

predicted velocity-slip at the wall. 
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Ignoring the line which shows the difference at Re·α=+10 as it represents the case 

where separation occurs, the line representing the difference for outflow at  

Re·α=+5 is examined. Using the same 10% difference criteria, it can be seen 

that the second order model becomes necessary only for Kn>0.09 which is very 

close to the upper limit of the range in which the Navier -Stokes equation with 

slip boundary conditions is applicable. For Re·α=0 the difference between the 

two models never reaches 10% so, for this case the first order slip model will be 

sufficient. As for the inflow cases at Re·α=-5 and Re·α=-10, the difference 

becomes significant at Kn=0.075 and Kn=0.052 respectively. 

Next the effect of the Kn number on the skin friction coefficient Cf is examined. 

Fig.4.10 shows the skin friction coefficient Cf for an inflow with different 

values of Re number while Fig.4.11 represents Cf for an outflow. As it can be 

seen for inflow, the two velocity-slip models result in reduced friction at the 

wall with the second order slip model always results in lower friction 

coefficient values. On the other hand for the outflow cases, it is seen that at 

small Re both models show lower friction coefficient than the no-slip model 

and the second order slip model predicts lower values than the first order 

model. As the Re increases to Re=50,  the second order model results in values 

larger than the first order model but still lower than the no-slip model. And last 

as the Re number increases to Re=100, the values of Cf predicted by the second 

order slip model drastically increases and become even larger than the values 

for the no-slip model. This strange behavior can be attributed to the reversal of 

the flow at the wall (separation) which only the second order slip model 

predicts. 

 



www.manaraa.com

43 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Friction coefficient Cf comparison for inflow at α=-0.1 and different Re: 

(a) for Re=10, (b) for Re=50 and (c) for Re=100. 
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Figure 4.11: Friction coefficient Cf comparison at α=+0.1 and different Re: (a) for 

Re=10, (b) for Re=50 and (c) for Re=100. 



www.manaraa.com

45 
 

 

Due to the importance of the separation concept on the analysis so far it was 

further investigated and summarized in figures 4.12 and 4.13. The first one 

(4.12) shows the velocity slip at the wall as predicted by the second order 

velocity-slip model, for different values of Kn as a function of Re·α. It shows 

that as the Kn number increases the Re·α value for which the separation occurs 

decreases. For Kn=0.01 the separation occurs at about Re·α=10.2 which is very 

close to the results for the no slip solution, while for Kn=0.1 the separations 

occurs at Re·α=8.8. The second figure (4.13) represents, the slip velocity at the 

wall for different Re·α as a function of Kn number. It shows that the larger the 

Re·α value is, the smaller the Kn number needed for separation to occur is.  

Figure 4.12: Second order model predicted velocity slip at the wall for different Kn 

numbers as a function of Re·α 
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Figure 4.13: Second order model predicted velocity slip at the wall for different Re·α as 

a function of Kn number. 
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4.2 Basic Gaseous Fluctuating Micro-Flows 

After the solutions for the four cases were obtained, they were plotted in the figures 

4.14 to 4.28. All the graphs were for Kn=0.1 as it is considered the end of the region in 

which the Navier-Stokes equations with velocity-slip and temperature-jump are 

applicable. The velocity and temperature accommodation coefficients σv and σt both are 

in the range of (0.2≤σ≤0.8) so an intermediate value of σ = 0.5 is used for all plots. The 

instantaneous velocity and temperature profiles for all four cases are plotted in figures 

4.14, 17, 20, 23 and 24 for both the first order slip and the second order velocity-slip 

and temperature-jump models.  

What can be observed by looking at these velocity profiles plots and at Fig. 4.18, 25 and 

26, is that as the driving force frequency increases the amplitude of the velocity or 

temperature at the wall decreases. This is due to the fact that the total amount of 

momentum transferred to the fluid by the wall in the Couette flow and Stoke’s second 

problem case, the pressure energy from the pump in the Poiseuille flow case and the 

thermal energy transferred from the wall in the natural convection case all decrease as 

the frequency increases. That is because the total energy transferred to the fluid is 

proportional to (cos(ωt)/ω), so as the frequency increases the total energy decreases. 

From these same velocity and temperature profiles figures it can be also seen that at 

lower frequencies the two models behave almost the same and so the first order 

velocity-slip/temperature-jump model being simpler is easier and more economical to 

use. But as the frequency increases they start to deviate from each other and when the 

difference between the two becomes significant enough the more complex, the 

implementation of the second order velocity-slip/temperature-jump model becomes a 

must for an improved accuracy. 
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The limiting frequency for this depends besides on the Knudsen number also on the 

geometry and flow driving force. The flow in both cases 1 and 3 is caused by the 

fluctuating walls and as such they follow a very similar pattern for the differences 

between the different models as can be seen in Fig. 4.15 and 21. From figures 4.16 and 

4.22 the effect the Knudsen number on the normalized difference 

(∆=  
𝑢1 𝑌,𝜔,𝜏 −𝑢2 𝑌,𝜔,𝜏 

𝑢1 𝑌,𝜔,𝜏 
 , where the 1 and 2 subscripts stand for first and second order 

slip model respectively) between the two models can be seen. Basically, the smaller the 

Kn number is the smaller the normalized difference between the two models is. So, for 

the purpose of this work the comparison between the two model has been made at 

Kn=0.1 as it is considered the upper limit of the region in which the Navies-Stokes 

equations with velocity-slip/temperature-jump boundary conditions are applicable and 

so the difference between the two models is more pronounced there.  

If a 5% difference  is considered to be significant enough to justify the use of the more 

complex model then from the detailed difference plot between the two models in 

Fig.4.16 and 22 it can be seen that at a Kn = 0.1 this happens for a dimensionless 

frequency of about ω = 8. This means that for a fluctuating wall frequency higher than 

ϖ= 8ν/L
2
 for case 1 and ϖ= 8u0

2
/ ν for case 3 the second order model should be used as 

it is significantly more accurate. In comparison, for case 2 where the flow is driven by a 

pump with a fluctuating pressure gradient, the behavior of the difference between the 

two models is completely different as can be seen in figures 4.18 and 19. For this case, 

and at large Kn number the slip at the wall is even more sensitive to the frequency, as 

can be seen in Fig. 4.19, the slip at the wall is close to 5% even below ω = 1.0. So 

basically, at relatively large Kn numbers and for fluctuating pressure gradient driven 

flow the second order model should be used for any ϖ ≥ ν/L
2
.  In the fourth case the 

flow is driven by a temperature difference caused by fluctuating heating source. This is 
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why for it the resulting temperature profiles were studied using both the first and second 

order temperature-jump models in addition to the velocity profiles like in the previous 

three cases. As it can be seen from Fig. 4.23 and 24 the two models behave similarly at 

relatively low frequencies but start to deviate significantly as the frequency increases. 

Using the same analysis criteria as for the previous three cases and by looking at 

Fig.4.27 it can be found that the difference between the two temperature-jump models 

becomes significant for ωt ≥ 7 or ϖt= 7ν/L
2
. As for the velocity-slip models, the 

difference between the two, is even more pronounced, as can be seen in Fig.4.28, and 

the frequency for which the difference of slip at the wall becomes significant is ωv ≥ 

1.35 which is equal to ϖv= 1.35ν/L
2
.  

Figure 4.14: Case 1 – Velocity profiles for first and second order slip at τ =TP/4 and 

Kn=0.1. 
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Figure 4.15: Case 1 – Normalized velocity slip difference between first and second 

order slip as a function of frequency for different Kn numbers. 

 

Figure 4.16: Case 1 – Normalized velocity slip difference between first and second 

order slip as a function of frequency for τ =TP/4 and Kn = 0.1. 
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Figure 4.17: Case 2 – Velocity profiles for first and second order slip at τ =TP/4 and Kn 

= 0.1. 

Figure 4.18: Case 2 - Normalized velocity slip for the first and second order slip as a 

function of frequency for τ =TP/4 and Kn = 0.1. 
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Figure 4.19: Case 2 - Normalized velocity slip differences between first and second 

order slip as a function of frequency for τ =TP/4 and Kn = 0.1. 

Figure 4.20: Case 3 - Velocity profiles for first and second order slip at τ =TP/4 and Kn 

= 0.1. 
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Figure 4.21: Case 3 – Normalized differences of velocity slip as a function of the 

frequency for τ =TP/4 and Kn = 0.1. 

Figure 4.22: Case 3 – Normalized velocity slip difference between first and second 

order slip as a function of frequency for τ =TP/4 and Kn = 0.1. 
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Figure 4.23: Case 4 – Temperature profiles for first and second order slip at τ =TP/4 

and  Kn = 0.1. 

Figure 4.24: Case 4 – Velocity profiles for first and second order slip at τ =TP/4 and Kn 

= 0.1. 
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Figure 4.25: Case 4 - Comparison between the slip velocities at the wall as a function of 

the frequency for τ =TP/4 and Kn = 0.1. 

Figure 4.26: Case 4 - Normalized temperature at the wall for the first and second order 

slip as a function of frequency for τ =TP/4 and Kn = 0.1. 
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Figure 4.27: Case 4 - Normalized temperature difference at the wall for the first and 

second order slip as a function of frequency for τ =TP/4 and Kn = 0.1. 

Figure 4.28: Case 4 - Normalized velocity slip difference at the wall between the first 

and second order slip at the wall as a function of frequency for different Kn numbers. 
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4.3 Fanno Flow in Microchannels 

After the above equations have been derived, they were used to plot the figures 

from 2 to 11. The objective is to investigate the effect of change of the Knudsen 

number (Kn) on the flow characteristics derived previously for the range 

0.001≤Kn≤0.1. This is the range the Navier-Stokes equations with slip boundary 

conditions are considered in the literature to be applicable. For the purpose of this 

work the specific heat ratio γ is set to be γ=1.4 (air). 

The first two figures, Fig. 4.29, 30 show the effect changing the Kn number has 

on the shape of the velocity profiles for the fully developed laminar flow in a 

circular tube. As it can be seen by looking at these two figures, the velocity 

profiles for the two slip models is very similar in shape to the no-slip model 

velocity profile except for the amount of velocity-slip at the wall. Also, by 

comparing these two figures it is seen that increasing the Kn from 0.01 to 0.1 

increases the slip at the pipe wall. Another thing which can be noticed from 

these two figures is that at Kn=0.01 the profiles of the two slip models 

practically overlap, while at Kn=0.1 they differ but only by a small amount. 

The amount of slip at the wall is as a function of Kn for the two velocity-slip 

models is summarized in the next figure, Fig.4.31. Here it is seen that even 

though the two models deviate significantly from the zero value for the no -slip 

model, for the studied Kn number range, they don’t deviate significantly from 

one another. So assuming that a difference between the no-slip model and the 

first order velocity-slip of 10% or more is significant enough to justify the use 

of the velocity-slip model, is can be seen that for Kn≥0.017 the first order slip 

model should be used instead of the no-slip model. The difference between the 

first and the second order slip models does not come even close to 10% for the  
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Figure 4.29: Normalized velocity profiles for laminar flow inside circular pipe, using 

the no-slip, first order and second order slip models at Kn=0.01. 

Figure 4.30: Normalized velocity profiles for laminar flow inside circular pipe, using 

the no-slip, first order and second order slip models at Kn=0.1. 
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Figure 4.31: Normalized velocity slip at the wall for the first order and second order slip 

models as a function of Kn. 

 

range under considerations so the use of the second order model to find the 

velocity distribution is neither necessary nor practical.  

The next two figures show the skin friction coefficient Cf for the two velocity-

slip models. The first figure, Fig. 4.32, represents Cf, as a function of Kn 

number for different values of the tangential -momentum-accommodation 

coefficient σv and using the two velocity-slip models. The tangential-momentum-

accommodation coefficient σv depends on the type of the fluid, the solid and on the 

surface finish. It has been experimentally determined to be between 0.2-0.8, the lower 

limit being for exceptionally smooth surfaces while the upper limit is typical for most 

practical surfaces. As it can be expected, the smaller σv value is, the lower the skin 
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friction coefficient Cf is. From this figures it is also seen that increasing Kn decreases 

Cf. What is also noted from the figure is that for the range investigated, there is little 

difference between the results given by the first and the second order slip models. Since 

the difference between the first order and the second order slip model seems to be 

negligible for the range under investigation, the next figure Fig. 4.33 shows the effect of 

Re on the Cf for the first order slip model only. It is plotted for different values of Kn 

and as it can be seen, the difference between the no-slip model and the first order slip 

model becomes apparent only for Kn ≥ 0.01, and only for relatively low Re numbers. As 

the Re number increases this difference becomes smaller so for relatively small Kn and 

higher Re the difference becomes insignificant. 

The next two figures, show how the change of the Darcy friction coefficient f  

(f=4Cf) with Kn number, affects the compressible fluid flow in circular tube. 

The   Lmax/D parameter is plotted against the Mach number (M) for the first 

order slip model along with the no-slip model. As it is seen from Fig. 4.34, the 

first order slip starts to deviate from the no-slip model for Kn≥0.01 and only for 

the supersonic flow regime. In the subsonic region, for Kn≤0.01, there is 

practically no difference between the no-slip and the first order slip models. In 

the next figure, Fig. 4.35, the second order slip model is plotted along with the 

first order slip and the no-slip models at Kn=0.1. From this it is seen that 

although the two slip models deviate much from the no-slip model, they don’t 

deviate from one another except for M≥2 and even then the difference between 

them is very small. 
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Figure 4.32: Skin friction coefficient Cf as predicted by the first and second order slip 

models as a function of Kn for different values of the accommodation coefficient σv at 

Re=100. 

Figure 4.33: Skin friction coefficient Cf for the no-slip and the first order slip models as 

a function of Re for different values of Kn and for σv=0.5. 
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Figure 4.34: Comparison between Lmax/D vs. M for the first order slip model at different 

Kn with the no-slip model for σv=0.5. 

Figure 4.35: Comparison between Lmax/D vs. M for the no-slip, first order and second 

order slip models at Kn=0.1 for σv=0.5. 
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The next two figures, Fig.4.36, 37 are modified plots of M and L/D, and show 

how a supersonic/subsonic fully-developed flow will behave as it enters a 

constant area duct and moves downstream. As a supersonic flow enters a 

microchannel, due to the friction with the wall it is decelerated along the path 

until it reaches M=1, and Fig.4.36 shows this velocity changes downstream. It 

is seen that increasing the Kn number will increase the L/D distance needed for 

the flow to reach M=1. This should be expected because as it was seen above, 

increasing Kn decreases the friction coefficient f. For subsonic flow entering a 

pipe, due to the friction, the flow is accelerated along the way until it finally 

reaches M=1, and Fig. 4.37 shows the velocity change along flow path. As for 

the supersonic flow, increasing the Kn number will increase the L/D distance 

needed for the flow to reach M=1. 

In the last figure, Fig.4.38 the difference between the critical L/D values for the 

two velocity-slip models as a function of Kn for different values of The 

tangential-momentum-accommodation coefficient σv is summarized. What can be 

seen from looking at Fig.4.36, 37 and 38 is that the difference between the first 

order slip and the second order slip models is very small compared to the 

difference between the first order slip and the no-slip model for the whole range 

of Kn number under investigation just as previously observed for the velocity 

profiles. So if the same criteria of a 10% difference are applied here also, these 

results would suggest that for an adiabatic compressible flow in circular 

microchannel, for Kn≤0.01 there is no need to apply any velocity-slip model as the no-

slip model will give sufficiently accurate predictions, while for the range 0.01≤Kn≤0.1, 

the first order velocity slip model should be applied, and there is no necessity to use the 

second order velocity-slip model. 
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Figure 4.36: Comparison between M vs. Lmax/D for the no-slip, first order and second 

order slip models for supersonic flow regime for σv=0.5. 

Figure 4.37: Comparison between M vs. Lmax/D for the no-slip, first order and second 

order slip models for subsonic flow regime for σv=0.5. 
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Figure 4.38: Normalized difference between Lmax/D for the first order and second order 

slip models as a function of Kn number.  
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Chapter Five 

Conclusions and Recommendations 

 

In this work, three different cases that cover different flow patterns in microchannels 

was studied by implementing the first and second order velocity-slip/temperature jump 

models in order to observe the behavior of the flow so that a certain criteria for the use 

of each of the no-slip, the first order slip and the second order slip models. These three 

cases are; the Jeffery-Hamel flow in microchannels, Fanno flow in circular 

microchannels and basic fluctuating flows in microchannels.   

5.1 Jeffery-Hamel Flow 

In the first section, the Jeffery-Hamel flow case has been studied using both, first order 

and second order velocity-slip boundary conditions models and then compared to the 

no-slip boundary conditions solution. The study concentrates on investigating the effect 

the change of Kn number has on the velocity profiles, magnitude of slip at the wall and 

the skin friction coefficient. A Jeffery-Hamel flow is radial flow caused by a line source 

or sink. The major factor in this kind of flows is the combined Re·α factor according to 

which the flow can be divided into two categories, inflow and outflow. When Re·α<0 

the flow is toward a sink and is called inflow, and when Re·α>0 the flow is outward of a 

source and is called outflow. 

For the inflow case it was found that due to the favorable pressure gradient the 

differences between the three models studied increases significantly as the Kn number 

increases and according to that three Kn number regions can be established. The first is 

the region where there is no need to use any velocity-slip model as the no-slip model is 
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accurate enough. The second is the region where the first order velocity slip model is 

sufficient and the third region is where only the second order velocity-slip model will 

suffice. As an example, for the case of Re·α=-10, these regions are: for 0<Kn<0.01, the 

no-slip boundary conditions model is sufficient, for 0.01<Kn<0.05, the first order 

velocity-slip model becomes necessary, and for 0.05<Kn<0.1 the second order velocity-

slip model will have to be used. 

In the outflow case the things stand a little more complex, as for 0<Re·α<8, the 

difference between the no-slip model and the two slip models is much smaller than for 

the inflow case, for example, at Re·α=+5, the difference becomes significant only at 

about Kn>0.04, so up to then the no slip model will give acceptable results. Also the 

difference between the first order slip and the second order slip models is negligible for 

almost the entire range of Kn numbers. But as Re·α parameter becomes larger, and for 

relatively large Kn numbers, the adverse pressure gradient causes the flow at the wall to 

separate at Re·α values lower than 10.31, the value obtained for the no-slip boundary 

conditions model. This fact is predicted only by the second order velocity-slip model for 

9<Re·α<10.31. So for outflow cases near the separation flow region the second order 

velocity-slip model should always be used. 

It was also found that increasing the Kn number decreases the skin friction coefficient 

Cf calculated using the two velocity-slip models in all cases except for when separation 

occurs, as when the velocity at the wall is reversed as predicted by the second order 

velocity-slip model, this factor increases. 

5.2 Basic Gaseous Fluctuating Micro-Flows  

In the second part, the effect of adding the second order term to the velocity-

slip/temperature-jump boundary condition has on the solution of four cases in which the 
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driving force is fluctuating was examined. The study concentrated on comparing the 

effect frequency has on the velocity and temperature solutions at given Kn number 

using the first and the second order slip/jump models. For most of the figures the Kn 

number was fixed at Kn=0.1 as it is considered the upper bound of the Kn number 

regime in which the Navier-Stokes equations with slip boundary conditions are 

applicable and also because the larger the Kn number is, the more pronounced the effect 

of increasing the frequency is. 

As the figures show, at a given Kn number value, increasing the driving force frequency 

increases the difference between the first and second order models. Assuming that a 

difference of over 5% is significant enough to justify the use of the more complex 

model the critical frequencies for the four different cases were found. It was found that 

the critical frequency for which the second order velocity-slip model should be used 

instead of the first order depends on the Kn number and also on the type of the flow 

driving force. 

For the cases for which the flow is induced by the fluctuating wall as in cases 1 and 3 

and at Kn = 0.1 it is found to be ϖ= 8ν/L
2
 for case 1 and ϖ= 8u0

2
/ ν for case 3. 

For the cases of flow driven by a fluctuating pressure gradient dp/dx as in case 2, this 

frequency was found to be much lower, as a comparison for the same value of Kn = 0.1 

the frequency is ϖ= ν/L
2
, i.e. eight times smaller. 

As for case 4, the fluctuating wall temperature driven transient natural convection flow 

there are two critical frequencies at which the difference between the first order and 

second order models becomes significant. The first is for the temperature-jump model 

and was found to be ϖt= 7ν/L
2
 at Kn = 0.1. The second, the velocity-slip model critical 

frequency at the same Kn number was found to be ϖv= 1.35ν/L
2
.  
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5.3 Fanno Flow in Microchannels 

In the third part, the Fanno flow problem has been studied using both, first order and 

second order velocity-slip boundary conditions models and then compared to the no-slip 

boundary conditions solution. The study concentrates on investigating the effect the 

change of Kn number has on the velocity profiles, magnitude of slip at the wall, skin 

friction coefficient Cf and the Lmax/D factor characteristic of Fanno line. The Fanno flow 

is an ideal gas adiabatic flow in constant area duct with friction. For this case the 

circular pipe geometry has been chosen and all the flow characteristics have been 

derived for the first and second order velocity-slip models. 

It is found that the velocity profile for the two velocity-slip models has generally the 

same shape as the no-slip model velocity profile but with a slip at the wall. This slip 

increases as the Kn increases and for Kn≥0.01 it becomes significant enough and the 

first order slip model should be used instead of the no-slip model. Also, the skin friction 

coefficient Cf is found to decrease as the Kn increases. Also the effect of the slip has on 

the compressible flow characteristics have been examined. It shows that as the Kn 

number increases, the friction coefficient f decreases. This reduction in friction leads to 

increase of the L/D parameter for both supersonic and subsonic flows with slip when 

compared to the no-slip solution.  

Overall, it is concluded that for an adiabatic compressible flow in circular microchannel, 

for Kn≤0.01 there is no need to apply any velocity-slip model as the no-slip model will 

give sufficiently accurate predictions. As for the range 0.01≤Kn≤0.1, the first order 

velocity slip model should be applied, and that for this range, there is no necessity to 

use the second order velocity-slip model. 
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This work has been concerned with the comparison between the first order slip model 

and the second order slip model for a number of cases. One recommendation for further 

work that comes to mind is to compare the second order slip model with some well 

established molecular model as for example the Direct Monte Carlo Simulation 

(DMCS) for the region Kn ≥ 0.1, i.e. for the transitional region, in order to study the 

second order velocity-slip/temperature-jump model’s accuracy and applicable Kn 

number range. 
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دراسة تأثير انزلاق السرعة و قفز الحرارة من الدرجة الثانية على الجريان في 
القنوات المجهرية 
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الأستاذ الدكتور محمد احمد النمر 
 
 

مـلـخــص 
 

تناول هذا العمل دراسة ثلاث حالات تغطً انماط مختلفة من الجرٌان فً القنوات المجهرٌة    

 الدرجتٌن الاولى و الثانٌة، و ذلك بهدف نباستخدام نماذج انزلاق السرعة و القفز فً الحرارة م

الأول و )النموذجٌن المذكورٌن التنبوء بسلوك الجرٌان من اجل وضع معاٌٌر لاستخدام كل من 

. (الثانً

باسخدام نموذجً  (Jeffery-Hamel )اة فً الجزء الاول من العمل تمت دراسة الحالة المسم   

-الانزلاق من الدرجة الاولى و الثانٌة و من ثم مقارنة النتائج بالنموذج التقلٌدي اي نموذج اللا

، مقدار  على توزٌع السرعة (Kn)تركز الجزء على دراسة تاثٌر التغٌر فً قٌمة ال .  انزلاق

فً حالة الجرٌان الى الداخل وجد انه و . الانزلاق عند الجدار قٌمة معامل الاحتكاك عند السطح

د هذا الفرق مع زٌادة قٌمة  ازدا الفرق بٌن النماذج الثللاث واضحاَ و كانبسبب الضغط الاٌجابً

(Kn)  مكن تحدٌد ثلاث مناطق مختلفة لاستخدام كل من النماذج الثلاثة يو بناءاَ على ذلك

اما فً حالة الجرٌان الى الخارج فان الفرق بٌن النماذج الثلاثة كان اقل بكثٌر لكن و . المذكورة

ملاحظ ان من الفأنه  (Kn)من القٌمة الحرجة له و مع زٌادة ال  (Re∙α)مع اقتراب المتغٌر 

هذه النتٌجة لم تظهر الا عند . سرعة الجرٌان عند الجدار تنعكس فٌما ٌسمى بظاهرة الانفصال

استخدام نموذج الانزلاق من الدرجة الثانٌة و بناءاَ على ذلك فانه ٌنصح بتطبٌق نموذج الدرجة 

ن زٌادة مقدار  ملاحظة   تم ٌضااً . الثانٌة عندما تكون ظروف الجرٌان قرٌبة من المنطقة الحرجة

(Kn)  تؤدي الى نقصان مقدار معامل الاحتكاك مع الجدار باستثناء حالة انعكاس سرعة الجرٌان

.  معامل الاحتكاك ٌزدادفعندها

تركزت الدراسة فً الجزء الثانً على تأثٌر اضافة الحد الثانً لعلاقة انزلاق السرعة  و القفز    

فً درجة الحرارة و ذلك فً اربع حالات مختلفة تشترك جمٌعها بان القوة المسببة للجرٌان فٌها 

تركز الاهتمام على تأثٌر تردد القوة الدافعة على توزٌع السرعة و الحرارة للمائع عند قٌم . متذبذبة

زٌادة مقدار التردد تؤدي الى زٌادة الفرق بٌن نموذجً  ن وجد فً هذا الجزء . (Kn)محددة لل

كما انه تم اٌجاد الترددات الحرجة الخاصة بكل من . انزلاق السرعة من الدرجة الأولى و الثانٌة

الحالات الاربع و هً الترددات التً عند زٌادة تردد القوة الدافعة عنها ٌفضل تطبٌق نموذج 
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وجد اٌضااً ان هذه الترددات الحرجة تعتمد بشكل . الدرجة الثانٌة عوضاَ عن نموذج الدرجة الأولى

. رئٌسً على نوع القوة الدافعة المسببة للجرٌان

اما فً الجزء الاخٌر من العمل فقد تمت دراسة جرٌان غاز قابل للانضغاط فً قناة مجهرٌة    

باستخدام نموذجً الانزلاق من الدرجة الاولى و  (Fanno Flow)دائرٌة المقطع فٌما ٌعرف ب

 السرعة و مقدار انزلاقها توزٌععلى  (Kn)تركز الاهتمام على دراسة تاثٌر التغٌر فً ال . الثانٌة

ما تمت . (Lmax/D)عند الجدار و اٌضاَ معامل الاحتكاك مع الجدار و المتغٌر الخاص بهذه الحالة 

تؤدي الى زٌادة مقدار الانزلاق عند الجدار و نقصان معامل  (Kn)ملاحظته ان الزٌادة فً قٌمة 

نقصان مقدار الاحتكاك عند الجدار تؤدي الى زٌادة مقدار المتغٌر . الاحتكاك مع السطح

(Lmax/D) يذجو استخدام نمةسواءاً كانت سرعة الجرٌان اقل او اكثر من سرعة الصوت فً حال 

 تم التوصل الى .(انزلاق-اللا)الانزلاق من الدرجة الاولى و الثانٌة  مقارنة بالنموذج التقلٌدي 

كون  (Kn)نتٌجة  نه لا ضرورة لاستخدام  ي من نماذج الأنزلاق للقٌم المنخفضة نسبٌااً من ال

النموذج التقلٌدي الأبسط ٌعطً نتائج مُرضٌة، بٌنما ٌفضل تطبٌق نموذج الأنزلاق من الدرجة 

 .و لا ضرورة لأستخدام نموذج الأنزلاق من الدرجة الثانٌة (Kn)الأولى للقٌم الأعلى نسبٌااً من ال
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